Erg potassium currents of neonatal mouse Purkinje cells exhibit fast gating kinetics and are inhibited by mGluR1 activation.

نویسندگان

  • Dragos Niculescu
  • Wiebke Hirdes
  • Sönke Hornig
  • Olaf Pongs
  • Jürgen R Schwarz
چکیده

We investigated the subthreshold properties of an erg (ether-à-go-go-related gene) K(+) current in Purkinje cells of neonatal mice. Action potentials recorded from Purkinje cells in cerebellar slices exhibited a decreased threshold potential and increased frequency of spontaneous and repetitive activity following application of the specific erg channel blocker E-4031. Accommodation was absent before and after drug application. The erg current of these Purkinje cells activated at membrane potentials near -60 mV and exhibited fast gating kinetics. The functional importance of fast gating subthreshold erg channels in Purkinje cells was corroborated by comparing the results of action potential clamp experiments with erg1a, erg1b, erg2, and erg3 currents heterologously expressed in HEK cells. Computer simulations based on a NEURON model of Purkinje cells only reproduced the effects of the native erg current when an erg channel conductance like that of erg3 was included. Experiments with subunit-sensitive toxins (BeKm-1, APETx1) indicated that erg channels in Purkinje cells are presumably mediated by heteromeric erg1/erg3 or modified erg1 channels. Following mGluR1 activation, the native erg current was reduced by ∼70%, brought about by reduction of the maximal erg current and a shift of the activation curve to more positive potentials. The Purkinje cell erg current contributed to the sustained current component of the biphasic mGluR1 response. Activation of mGluR1 by the agonist 3,4-dihydroxyphenylglycol increased Purkinje cell excitability, similar to that induced by E-4031. The results indicated that erg currents can be modulated and may contribute to the mGluR1-induced plasticity changes in Purkinje cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voltage-dependent potassium currents during fast spikes of rat cerebellar Purkinje neurons: inhibition by BDS-I toxin.

We characterized the kinetics and pharmacological properties of voltage-activated potassium currents in rat cerebellar Purkinje neurons using recordings from nucleated patches, which allowed high resolution of activation and deactivation kinetics. Activation was exceptionally rapid, with 10-90% activation in about 400 mus at +30 mV, near the peak of the spike. Deactivation was also extremely ra...

متن کامل

Activity-Dependent Gating of Calcium Spikes by A-type K+ Channels Controls Climbing Fiber Signaling in Purkinje Cell Dendrites

In cerebellar Purkinje cell dendrites, heterosynaptic calcium signaling induced by the proximal climbing fiber (CF) input controls plasticity at distal parallel fiber (PF) synapses. The substrate and regulation of this long-range dendritic calcium signaling are poorly understood. Using high-speed calcium imaging, we examine the role of active dendritic conductances. Under basal conditions, CF s...

متن کامل

ERG K+ currents regulate pacemaker activity in ICC.

Ether-à-go-go-related gene (ERG) K channels have been implicated in the generation of pacemaker activities in the heart. To study the presence and function of ERG K channels in the pacemaker cells of the small intestine [the interstitial cells of Cajal (ICC)], a combination of patch-clamp techniques, tissue and live cell immunohistochemistry, RT-PCR, and in vitro functional studies were perform...

متن کامل

Kinetic, pharmacological and activity-dependent separation of two Ca2+ signalling pathways mediated by type 1 metabotropic glutamate receptors in rat Purkinje neurones.

Type 1 metabotropic glutamate receptors (mGluR1) in Purkinje neurones (PNs) are important for motor learning and coordination. Here, two divergent mGluR1 Ca2+-signalling pathways and the associated membrane conductances were distinguished kinetically and pharmacologically after activation by 1-ms photorelease of L-glutamate or by bursts of parallel fibre (PF) stimulation. A new, mGluR1-mediated...

متن کامل

Evidence for protein tyrosine phosphatase, tyrosine kinase, and G-protein regulation of the parallel fiber metabotropic slow EPSC of rat cerebellar Purkinje neurons.

The slow EPSP (sEPSP) or slow EPSC (sEPSC) at parallel fiber to Purkinje neuron synapses is attributable to a nonselective cation channel coupled to activation of metabotropic type 1 glutamate receptors (mGluR1s). Photorelease of L-glutamate in 1 msec from 4-methoxy-7-nitroindolinyl-or 7-nitroindolinyl-caged glutamate in cerebellar slices was used to isolate and study postsynaptic mechanisms co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 33 42  شماره 

صفحات  -

تاریخ انتشار 2013